Generators of Detailed Balance Quantum Markov Semigroups

نویسنده

  • FRANCO FAGNOLA
چکیده

For a quantum Markov semigroup T on the algebra B(h) with a faithful invariant state ρ, we can define an adjoint T̃ with respect to the scalar product determined by ρ. In this paper, we solve the open problems of characterising adjoints T̃ that are also a quantum Markov semigroup and satisfy the detailed balance condition in terms of the operators H,Lk in the Gorini Kossakowski Sudarshan Lindblad representation L(x) = i[H,x] − 1 2 ∑ k(L ∗ kLkx − 2LkxLk + xLkLk) of the generator of T . We study the adjoint semigroup with respect to both scalar products 〈a, b〉 = tr(ρab) and 〈a, b〉 = tr(ρaρb). Kerwords: Quantum detailed balance, quantum Markov semigroup, Lindablad representation AMS Subject Classification: 46L55, 47D05, 82B10, 82C10, 81S25

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generators of KMS Symmetric Markov Semigroups on B(h) Symmetry and Quantum Detailed Balance

We find the structure of generators of norm continuous quantum Markov semigroups on B(h) that are symmetric with respect to the scalar product tr(ρxρy) induced by a faithful normal invariant state invariant state ρ and satisfy two quantum generalisations of the classical detailed balance condition related with this non-commutative notion of symmetry: the socalled standard detailed balance condi...

متن کامل

A Cycle Decomposition and Entropy Production for Circulant Quantum Markov Semigroups

We propose a definition of cycle representation for Quantum Markov Semigroups (qms) and Quantum Entropy Production Rate (QEPR) in terms of the ρ-adjoint. We introduce the class of circulant qms, which admit non-equilibrium steady states but exhibit symmetries that allow us to compute explicitly the QEPR, gain a deeper insight into the notion of cycle decomposition and prove that quantum detaile...

متن کامل

Entropic fluctuations of quantum dynamical semigroups

We study a class of finite dimensional quantum dynamical semigroups {e}t≥0 whose generators L are sums of Lindbladians satisfying the detailed balance condition. Such semigroups arise in the weak coupling (van Hove) limit of Hamiltonian dynamical systems describing open quantum systems out of equilibrium. We prove a general entropic fluctuation theorem for this class of semigroups by relating t...

متن کامل

Estimating the decoherence time using non-commutative Functional Inequalities∗

We generalize the notions of the non-commutative Poincaré and modified log-Sobolev inequalities for primitive quantum Markov semigroups (QMS) to not necessarily primitive ones. These two inequalities provide estimates on the decoherence time of the evolution. More precisely, we focus on an algebraic definition of environment-induced decoherence in open quantum systems which happens to be generi...

متن کامل

Decomposition and Classification of Generic Quantum Markov Semigroups: The Gaussian Gauge Invariant Case

Abstract We study a class of generic quantum Markov semigroups on the algebra of all bounded operators on a Hilbert space h arising from the stochastic limit of a discrete system with generic Hamiltonian HS , acting on h, interacting with a Gaussian, gauge invariant, reservoir. The self-adjoint operator HS determines a privileged orthonormal basis of h. These semigroups leave invariant diagonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008